(-2(x^2-7))/((x^2+7)^2)=0

Simple and best practice solution for (-2(x^2-7))/((x^2+7)^2)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-2(x^2-7))/((x^2+7)^2)=0 equation:



(-2(x^2-7))/((x^2+7)^2)=0
Domain of the equation: ((x^2+7)^2)!=0
x∈R
We multiply all the terms by the denominator
(-2(x^2-7))=0
We calculate terms in parentheses: +(-2(x^2-7)), so:
-2(x^2-7)
We multiply parentheses
-2x^2+14
Back to the equation:
+(-2x^2+14)
We get rid of parentheses
-2x^2+14=0
a = -2; b = 0; c = +14;
Δ = b2-4ac
Δ = 02-4·(-2)·14
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{7}}{2*-2}=\frac{0-4\sqrt{7}}{-4} =-\frac{4\sqrt{7}}{-4} =-\frac{\sqrt{7}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{7}}{2*-2}=\frac{0+4\sqrt{7}}{-4} =\frac{4\sqrt{7}}{-4} =\frac{\sqrt{7}}{-1} $

See similar equations:

| 2(x-40)=3(100-x) | | 1/5=5^2c+3 | | -6x-6-7=-7x+2 | | 3g^2-3g=3 | | b+(-10)=-6 | | 4m-(m+3)=-6 | | 27.3=1/2*6.5h | | 47x-1=0 | | 6x+2=-5+2x+15 | | 2x+8=2(x+4)=2(x+4) | | 4x/3+7=15 | | b+3=-20 | | 8x+6=4x+23 | | 10x+99=100 | | 63.583=3.14r2 | | t/6=9;52,53,54 | | 300x=51 | | 25p-16=0 | | 8r-6=4r | | 30/w=5;4,5,6 | | 9x+8=100 | | 300=2*10+2l | | 210=2x+2x+x | | 8-3*2=y | | 54=n/9+45 | | 300=2(10)+2l | | 1+32=4c | | 2(n=3)+-2+2n | | 10+4x=5x-3 | | -8x+27=-13 | | 7x+2−3x=46 | | x^2+2x=0.84 |

Equations solver categories